Abstract

A two degrees of freedom (DOF) coupled model is investigated in this paper to analyze the acceleration sensitivity of MEMS tuning fork gyroscopes (TFG) and approaches of decreasing the acceleration sensitivity are presented. Since two tines of TFGs are asymmetric in the mass, stiffness and damping caused by the technological defects, there exists the coupled effect between two tines leading to the invalidity of a single DOF model. Therefore, a two DOFs model is established and the matrix perturbation technique is used to calculate the dynamic responses of the two tines by applying the common-mode acceleration. Our quantitative analysis reveals that the displacement difference is large in the in- and anti-phase modal frequencies between two tines, arising from the unsynchronized motion of two tines due to stiffness imbalance. The FEM simulations coincide with our theoretical calculations. Meanwhile, we take advantage of the experimental data from the other researches to verify our theoretical model and analytical expressions. Our results demonstrate that the acceleration sensitivity of TFGs can be reduced by increasing the coupled stiffness ratio, modal frequency and sense beams widths which are insensitive to technological dispersions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call