Abstract

Modification of the crystallization kinetics of amorphous systems is an important topic, in particular in the area of drug delivery. Herein, we studied the impact of polyhydroxybutyrate (PHB), a biocompatible polymer with a low glass transition temperature (Tg), on crystal growth rates from the supercooled liquid phase of a variety of organic compounds. Low levels of PHB were mixed with the supercooled liquid and growth rates were monitored using optical microscopy at several temperatures above the Tg of the mixture. Growth rates were determined from a plot of crystal size as a function of time. It was found that PHB inhibited the growth of low Tg compounds, while accelerated crystal growth was observed for compounds that had a much higher Tg (>50 °C) than the polymer. The observations were rationalized based on the extent of mobility differences between the crystallizing compound and the polymer. This is the first reported example of a polymer having compound specific inhibitory or accelerator effects on crystal growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.