Abstract

The numerical study of reactive flows subjected to supersonic conditions is accelerated by the co-design of a novel strategy to integrate finite-rate chemistry by an adaptive multi-block ODE algebra solver for Graphical Processing Units (GPU), that is coupled to a parallel, shock-capturing Finite-Volume reactive flow solver running on CPUs. The resulting GPGPU solver is validated on Large Eddy Simulations (LES) of a scramjet configuration, whose experimental measurements are available from the literature. It is demonstrated that the proposed method significantly accelerates the solution of reactive CFD computations with Direct Integration of the finite-rate chemistry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call