Abstract

The recharge of reclaimed water is an effective strategy for addressing the issues of water quality deterioration and groundwater level decline simultaneously. Residual Al coagulants are normally remained in the recovered water at low concentrations, and may induce clogging problems during the recharging process. However, this issue has been ignored in the past. In this study, we investigated the mechanisms of Al(III)-induced aquifer bio-clogging, the role of Al(III) in quartz sand media (SiO2) dissolution and re-precipitation in the series of aquifer columns. We determined that Al(III) resulted in serious clogging in ∼140 h at low concentrations that satisfied the national drinking water standard of China. The corresponding hydraulic conductivity decreased by more than ∼90% in the bacteria-containing aquifer, which was ∼30% greater than that for the bacteria-free trials. The enhanced Al(III)-related clogging was caused by modifying quartz sand to form Si-O-Al(OH)n and improving microbes attachment. Microbes retention kinetic coefficients (k) of the Al recharged simulated aquifer could increase by 3.0–8.3 times. The Al(III) also enhanced biomass production and clogging by binding to microbial extracellular polymeric substances. In turn, the greater amount of biomass accelerated the Si dissolution and re-precipitation, this may potentially damage the stability of aquifer structure. The results showed that reclaimed water treated with Al coagulation should be employed with caution for recharging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.