Abstract

Bioremediation of polychlorinated biphenyls (PCBs) is impeded by difficulties in massively cultivating bioinoculant. Meanwhile, sewage sludge is rich in pollutant-degrading microorganisms and nutrients, drawing our attention to investigate their potential to be used as a supplement for bioremediation of PCBs. Here we reported extensive microbial reductive dechlorination of PCBs by waste activated sludge (WAS) and digestion sludge (DS), which were identified to harbor multiple putative organohalide-respiring bacteria (i.e., Dehalococcoides, Dehalogenimonas, Dehalobacter, and uncultivated Dehalococcoidia) and PCB reductive dehalogenase genes (i.e., pcbA4 and pcbA5). Consequently, amendment of 1–20% (w/w) fresh WAS/DS enhanced the attenuation of PCBs by 126–544% in a soil microcosm compared with the control soil, with the fastest dechlorination of PCBs being achieved when spiked with 20% fresh WAS. Notably, dechlorination pathways of PCBs were also changed by sludge amendment. Microbial and physicochemical analyses revealed that the enhanced dechlorination of PCBs by sludge amendment was largely attributed to the synergistic effects of sludge-derived nutrients, PCB-dechlorinating bacteria, and stimulated growth of beneficial microorganisms (e.g., fermenters). Finally, risk assessment of heavy metals suggests low potential ecological risks of sludge amendment in soil. Collectively, our study demonstrates that sewage sludge amendment could be an efficient, cost-effective and environment-friendly approach for in situ bioremediation of PCBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call