Abstract

Measurements from the suprathermal ion composition spectrometer (STICS) sensor of the energetic particle and ion composition (EPIC) instrument on the Geotail spacecraft were used to investigate dynamics of O+ ions of ionospheric origin at energies of 9 keV to 210 keV in the near‐Earth plasma sheet during the substorm expansion phase. Substorm signatures were clearly observed on the ground at 1850 UT on May 17, 1995. In the expansion phase of this substorm, Geotail stayed in the plasma sheet at X∼−10.5 RE and observed a local dipolarization signature accompanied by strong disturbances of the magnetic field. From the energetic ion flux data of EPIC/STICS, we obtained the following results: (1) energetic flux enhancement was more pronounced for O+ than for H+; (2) the flux was enhanced almost simultaneously with local dipolarization; (3) the enhancement factor of O+ ions (EO+), which represents the enhancement of the O+ flux ratio (after and before substorm onset) relative to the H+ flux ratio, was as large as 1.31; and (4) thermal energy increased from 8.9 keV to 42.8 keV for O+ ions and from 9.4 keV to 15.9 keV for H+ ions. We also performed statistical analysis for 35 events of local dipolarization found in the near‐Earth region (X∼−6 to −16 RE). We found that EO+ is larger than unity in all ranges of radial distance and that the average value of EO+ is 1.37. These results suggest that O+ ions are commonly more energized than H+ ions during the substorm expansion phase. To interpret these observational results, we propose a mechanism in which ions are accelerated in a non‐adiabatic way during substorm‐associated field reconfiguration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call