Abstract

Investigation of titanium-centered metallacycle-mediated cross-coupling between unsymmetrical internal alkynes has led to the discovery that TMSCl significantly accelerates the CC bond forming event. We report a collection of results that compare the efficiency of this reaction employing Ti(Oi-Pr)4/2n-BuLi in PhMe with and without TMSCl, demonstrating in every case that the presence of TMSCl has a profound impact on efficiency. While relevant in the context of developing this fundamental bond-forming process as an entry to more complex organometallic transformations, these modified reaction conditions allow coupling processes to be run at >10 times the concentrations previously possible [in 2.4M n-BuLi (hexanes)], without the requirement of additional solvent. Finally, we demonstrate the effectiveness of these modified reaction conditions for the annulative cross-coupling between TMS-alkynes and 1,6-enynes leading to the formation of angularly substituted hydrindanes with, now well appreciated, high levels of regio- and stereoselection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.