Abstract
We propose a positron acceleration scheme in which a laser-driven positron beam is injected into a solid target hit by a laser beam and accelerated in the sheath field on the target back side. The positron beam injection and acceleration in the target have been investigated with numerical simulation. The feasibility of such an acceleration scheme was proved according to the simulation results, which show that a 10 MeV positron beam can be accelerated up to 30 MeV. The dependency of the positron beam properties on the positron injection location, injection time, and target thickness was studied. Related acceleration details were obtained and analyzed. The acceleration scheme provides a method in positron energy controlling and its related applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.