Abstract
SummaryStabilization rates of power‐integrator chains are easily regulated. It provides a framework for acceleration of uncertain multiple‐input–multiple‐output dynamic systems of known relative degrees (RDs). The desired rate of the output stabilization (sliding‐mode control) is ensured for an uncertain system if its RD is known, and a rough approximation of the high‐frequency gain matrix is available. The uniformly bounded convergence time (fixed‐time stability) is obtained as a particular case. The control can be kept continuous everywhere except the sliding‐mode set if the partial RDs are equal. Similarly, uncertain smooth systems of complete multiple‐input–multiple‐output RDs (ie, lacking zero dynamics) are stabilized by continuous control at their equilibria in finite time and are accelerated. Output‐feedback controllers are constructed. Computer simulation demonstrates the efficiency of the proposed approach.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Robust and Nonlinear Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.