Abstract

Evolutionary Multi-objective Optimization (EMO) is expected to be a powerful optimization framework for real world problems such as engineering design. Recent progress in automatic control and instrumentation provides a smart environment called Hardware In the Loop Simulation (HILS). It is available for our target application, that is, the experiment-based optimization. However, since Multi-objective Evolutionary Algorithms (MOEAs) require a large number of evaluations, it is difficult to apply it to real world problems of costly evaluation. To make experiment-based EMO using the HILS environment feasible, the most important pre-requisite is to reduce the number of necessary fitness evaluations. In the experiment-based EMO, the performance analysis of the evaluation reduction under the uncertainty such as observation noise is highly important, although the previous works assume noise-free environments. In this paper, we propose an evaluation reduction to overcome the above-mentioned problem by selecting the solution candidates by means of the estimated fitness before applying them to the real experiment in MOEAs. We call this technique Pre-selection. For the estimation of fitness, we adopt locally weighted regression. The effectiveness of the proposed method is examined by numerical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.