Abstract

Kinematic characteristics of electrons and protons in the magnetic reconnecting current sheet in the presence of a guide field are investigated. Particle trajectories are calculated for different values of the guide field by a test-particle calculation. The relationship between the final energy and the initial position has also been studied. We found that the addition of a guide field not only allows particles to get more energy and not only results in the separation of electrons and protons, but also causes the reconnecting electric field to selectively accelerate electrons and protons for different initial positions. The energy spectrum eventually obtained is the common power-law spectrum, and as the guide field increases, the index for the spectrum of electrons decreases rapidly. However, for a weak background magnetic field, proton spectra are not very sensitive to the guide field; but for a strong background field, the dependence of the spectrum index is similar to the electron spectrum. Meanwhile, kinematic characteristics of the accelerated particles in the current sheet including multiple X-points and O-points were also investigated. The result indicates that the existence of the multiple X- and O-points helps particles trapped in the accelerating region to gain more energy, and yields the double or multiple power-law feature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.