Abstract

Electron repulsion integral (ERI) calculation on graphical processing units (GPUs) can significantly accelerate quantum chemical calculations. Herein, the ab initio self-consistent-field (SCF) calculation is implemented on GPUs using recurrence relations, which is one of the fastest ERI evaluation algorithms currently available. A direct-SCF scheme to assemble the Fock matrix efficiently is presented, wherein ERIs are evaluated on-the-fly to avoid CPU-GPU data transfer, a well-known architectural bottleneck in GPU specific computation. Realized speedups on GPUs reach 10-100 times relative to traditional CPU nodes, with accuracies of better than 1 × 10(-7) for systems with more than 4000 basis functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call