Abstract

We investigate the overdamped Brownian motion in a supersymmetric periodic potential switched by Markovian dichotomous noise between two configurations. The two configurations differ from each other by a shift of one-half period. The calculation of the effective diffusion coefficient is reduced to the mean first passage time problem. We derive general equations to calculate the effective diffusion coefficient of Brownian particles moving in arbitrary supersymmetric potential. For the sawtooth potential, we obtain the exact expression for the effective diffusion coefficient, which is valid for the arbitrary mean rate of potential switchings and arbitrary intensity of white Gaussian noise. We find the acceleration of diffusion in comparison with the free diffusion case and a finite net diffusion in the absence of thermal noise. Such a potential could be used to enhance the diffusion over its free value by an appropriate choice of parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.