Abstract
Flexible fitting is a powerful technique to build the 3D structures of biomolecules from cryoelectron microscopy (cryo-EM) density maps. One popular method is a cross-correlation coefficient-based approach, where the molecular dynamics (MD) simulation is carried out with the biasing potential that includes the cross-correlation coefficient between the experimental and simulated density maps. Here, we propose efficient parallelization schemes for the calculation of the cross-correlation coefficient to accelerate flexible fitting. Our schemes are tested for small, medium, and large biomolecules using CPU and hybrid CPU+ GPU architectures. The scheme for the atomic decomposition MD is suitable for small proteins such as Ca2+-ATPase with the all-atom Go model, while that for the domain decomposition MD is better for larger systems such as ribosome with the all-atom Go or the all-atom explicit solvent models. Our methods allow flexible fitting for various biomolecules with reasonable computational cost. This approach also connects high-resolution structure refinements with investigation of protein structure-function relationship.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.