Abstract
Although parallelization of computationally intensive algorithms has become a standard with the scientific community, the possibility of in-core vectorization is often overlooked. With the development of modern HPC architectures, however, neglecting such programming techniques may lead to inefficient code hardly utilizing the theoretical performance of nowadays CPUs. The presented paper reports on explicit vectorization for quadratures stemming from the Galerkin formulation of boundary integral equations in 3D. To deal with the singular integral kernels, two common approaches including the semi-analytic and fully numerical schemes are used. We exploit modern SIMD (Single Instruction Multiple Data) instruction sets to speed up the assembly of system matrices based on both of these regularization techniques. The efficiency of the code is further increased by standard shared-memory parallelization techniques and is demonstrated on a set of numerical experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.