Abstract

Improving the biochemical and structural qualities of the new tissue that fills deep osteochondral defects is critical to enhance articular cartilage repair. We developed a novel molecular therapy to increase articular cartilage repair based on a combined strategy to stimulate chondrogenesis by co-transfection of the human insulin-like growth factor I (IGF-I) and fibroblast growth factor 2 (FGF-2) in a xenogenic transplantation model. NIH 3T3 cells were transfected with expression plasmid vectors containing a cDNA for the E. coli lacZ gene (lacZ implants), the human IGF-I gene (IGF-I implants) or both the human IGF-I and FGF-2 genes (IGF-I/FGF-2 implants). The expression patterns of the transgenes were monitored in vitro for 21 days. LacZ, IGF-I and IGF-I/FGF-2 implants were transplanted into osteochondral defects in the trochlear groove of rabbits. At 3 weeks, the quality of articular cartilage repair was evaluated qualitatively and quantitatively. Both IGF-I and IGF-I/FGF-2 implants secreted increased levels of the corresponding recombinant proteins in vitro. In vivo, transplantation of the co-transfected IGF-I/FGF-2 implants increased the DNA content of the repair tissue, accelerated the formation of the subchondral bone and improved articular cartilage repair in a magnitude that was larger than with IGF-I alone or when compared to lacZ implants. These results suggest that gene delivery of a combination of IGF-I and FGF-2 to cartilage defects may be more beneficial than application of IGF-I alone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call