Abstract

In this paper, we propose a novel repetitive motion planning (RMP) scheme at the joint-acceleration level (termed, the acceleration-level RMP scheme, the ARMP scheme), which incorporates joint-angle limits, joint-velocity limits and joint-acceleration limits. To do this, Zhang et al's neural-dynamic method is employed to derive and design such an ARMP scheme. Such a scheme is then reformulated as a quadratic program (QP). To solve this QP problem online, a simplified linear-variational-inequality based primal-dual neural network (i.e., S-LVI-PDNN) is designed. With simple piecewise-linear dynamics and global exponential convergence to the optimal solution, such an S-LVI-PDNN solver can handle the strictly convex QP problem in an inverse-free manner. Finally, three given tasks, i.e., rhombic path, straight-line path and square path tracking tasks, are fulfilled by three-link, four-link and five-link planar robot arms, respectively. Computer-simulation and physical experiment results validate the physical realizability, efficacy and accuracy of the ARMP scheme and the corresponding S-LVI-PDNN solver.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.