Abstract

A combined analytical and numerical model for the analysis of the deprime and reprime/rewetting characteristics of two high-capacity external artery heat pipe designs undergoing externally induced accelerations was developed using several previously derived analytical expressions. Three distinct phases of the deprime and reprime/rewetting process were analyzed: (1) the effect of longitudinal accelerations on the depriming, (2) the time required for repriming of the liquid artery once the longitudinal acceleration has been terminated, and (3) the rewetting characteristics of the circumferential wall grooves. Combining the three processes, a technique was developed allowing the prediction of the effect of external acceleration on the characteristics of the external artery heat pipes. The predictions made with this technique agreed well with the microgravity flight results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.