Abstract

Abstract The use of flexible electronics wearable applications has prompted the need to understand the stresses imposed during human motion for a range of activities. Wearable applications may involve situations in which the electronics may be flexed-to-install, stretched or subjected to thousands cycles of dynamic flexing. In order to develop meaningful test-levels, a better understanding is needed of the use-cases, variance, and the acceleration factors. In this study, the human body motion data for walking, jumping, squats, lunges, and bicep curls were measured using a set of ten Vicon cameras to measure the position, velocity, and accelerations of a standard full-body sensor location of the human body. In addition, reliability data has been gathered on test vehicles subjected to dynamic flexing. Continuous resistance data have been gathered on circuits subjected to dynamic flexing till failure for some of the commonly used trace geometries in electronic circuits. Experimental measurements during the accelerated tests of the boards were combined with the human body motion data to model the acceleration factor for different human activities based on the flexing angles. Human motion for multiple subjects and multiple joints has been correlated to the test levels for the development of acceleration factors. Statistical analysis on the variation of the joint angles with hypothesis testing has been conducted for different subjects and for different human body actions. Acceleration factors models have been developed for walking, jumping, squats, lunges, and bicep curls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call