Abstract

This article investigates and quantifies, for varying drive system ratings (0.5–2.0 times the rating of a small and large reference system), the tradeoff relations between the electric vehicle acceleration performance and energy consumption during a wide range of drive cycles, using detailed load-dependent loss models. Additionally, the results are related to estimated drive system cost by transparently determined scalable electric motor and inverter cost models. When reducing the system rating to half, the cost is 83% of the small reference system and 76% of the large. The acceleration time (0–100 km/h) decreases nonlinearly with increasing system rating. Interestingly, the drive cycle energy consumption generally decreases with decreasing drive system rating, and most cycles show a minimum consumption with a downscaled drive system. For the small system, the strongest impact was noted for the HWFET cycle where the energy consumption is reduced 2% when downscaling the drive system by 0.5 relative to the reference system. For the large system, NYCC shows the largest reduction in energy consumption: 4% when scaled by 1.6 relative to the reference system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.