Abstract

We analyze how an optically induced photonic lattice affects and modifies the acceleration of Airy beams. Various conditions for the propagation and existence of Airy beams are considered in both linear and nonlinear regimes. We investigate how the strength of a medium's nonlinearity and the lattice intensity influence beam diffraction as well as reduction of beam acceleration. It is shown that the transverse acceleration of Airy beams, when propagating in a photonic lattice, can be reduced to the point of creating a beam similar to discrete solitons. Acceleration control of Airy beams near lattice boundaries is also investigated. We observe a novel type of Airy surface mode, localized in the lattice corner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call