Abstract

The battery electric vehicle (BEV) has disadvantages of high power loss during acceleration and poor regenerative braking energy recapture. Moreover, the battery is frequently exposed to repetitive high power demand, which consequently shortens the battery lifetime [1]. To overcome these problems, many parallel connections of energy sources have been proposed by scientists with the aim to reduce high peak power supply and repetitive power, as well as to save battery energy and lengthen its use [2], [3]. In this article, a parallel supercapacitors (SCs)- batteries scheme for battery hybrid electric vehicle (BHEV) and its control are proposed. The configuration consists of a parallel connection of batteries and SCs, which are connected to the inverter via a bidirectional dc-dc converter, as shown in Figure 1. This scheme intends to save braking energy for extending the driving range. In order to control the voltage and current of SCs, the control algorithms, composed of cascaded voltage and current loops based on the acceleration-based design (ABD), are developed. For efficiency validation, comparison of the core features between 3 different system configurations are proposed: the proposed BHEV with acceleration-based design (BHEV-ABD), BHEV with load-based design (BHEV-LBD) [4], and a pure BEV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.