Abstract

Ongoing climate change calls for fast and accurate weather and climate modeling. However, when solving large-scale weather prediction simulations, state-of-the-art CPU and GPU implementations suffer from limited performance and high energy consumption. These implementations are dominated by complex irregular memory access patterns and low arithmetic intensity that pose fundamental challenges to acceleration. To overcome these challenges, we propose and evaluate the use of near-memory acceleration using a reconfigurable fabric with high-bandwidth memory (HBM). We focus on compound stencils that are fundamental kernels in weather prediction models. By using high-level synthesis techniques, we develop NERO, an field-programmable gate array+HBM-based accelerator connected through Open Coherent Accelerator Processor Interface to an IBM POWER9 host system. Our experimental results show that NERO outperforms a 16-core POWER9 system by \( 5.3\times \) and \( 12.7\times \) when running two different compound stencil kernels. NERO reduces the energy consumption by \( 12\times \) and \( 35\times \) for the same two kernels over the POWER9 system with an energy efficiency of 1.61 GFLOPS/W and 21.01 GFLOPS/W. We conclude that employing near-memory acceleration solutions for weather prediction modeling is promising as a means to achieve both high performance and high energy efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.