Abstract

Catalyzing water dissociation (WD) into protons and hydroxide ions is important both for fabricating bipolar membranes (BPMs) that can couple different pH environments into a single electrochemical device and for accelerating electrocatalytic reactions that consume protons in neutral to alkaline media. We designed a BPM electrolyzer to quantitatively measure WD kinetics and show that, for metal nanoparticles, WD activity correlates with alkaline hydrogen evolution reaction activity. By combining metal-oxide WD catalysts that are efficient near the acidic proton-exchange layer with those efficient near the alkaline hydroxide-exchange layer, we demonstrate a BPM driving WD with overpotentials of <10 mV at 20 mA·cm-2 and pure water BPM electrolyzers that operate with an alkaline anode and acidic cathode at 500 mA·cm-2 with a total electrolysis voltage of ~2.2 V.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call