Abstract
Privacy, security and data governance constraints rule out a brute force process in the integration of cross-silo data, which inherits the development of the Internet of Things. Federated learning is proposed to ensure that all parties can collaboratively complete the training task while the data is not out of the local. Vertical federated learning is a specialization of federated learning for distributed features. To preserve privacy, homomorphic encryption is applied to enable encrypted operations without decryption. Nevertheless, together with a robust security guarantee, homomorphic encryption brings extra communication and computation overhead. In this paper, we analyze the current bottlenecks of vertical federated learning under homomorphic encryption comprehensively and numerically. We propose a straggler-resilient and computation-efficient accelerating system that reduces the communication overhead in heterogeneous scenarios by 65.26% at most and reduces the computation overhead caused by homomorphic encryption by 40.66% at most. Our system can improve the robustness and efficiency of the current vertical federated learning framework without loss of security.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.