Abstract

In advanced video surveillance systems, people localization is usually a part of the complete system and should be accomplished in a short time so as to reserve sufficient processing time for subsequent high-level analysis, such as abnormal event/behavior detection and intruder detection. Hence, in addition to localization accuracy, computational efficiency is of critical importance as well. In this paper, we adopt a vanishing point-based line sampling scheme and propose a fast multicamera people localization approach capable of locating a crowd of dense people and estimating their heights in a fairly short time with high accuracy. For each camera view, sample lines, originated from a vanishing point, of foreground objects are projected onto the ground plane. Then, people locations are estimated by detecting the ground regions containing a high density of the projected lines. Enhanced from some previous works, the proposed approach does not require processing steps of high computation cost, such as projecting all foreground pixels of all views to multiple reference planes or computing pairwise intersections of projected sample lines at different heights. In addition, some novel acceleration modules, such as torso validation and physical rule-based filtering, are developed to further reduce the computation time of people localization. The experiments on real surveillance scenes validate that the proposed approach achieves significant speedup (up to 186%) over state-of-the-art techniques while still ensure a comparably high localization accuracy, even for crowded scenes with serious occlusions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.