Abstract
Tube-based model predictive control (MPC) is a variant of MPC that is suitable for constrained linear systems subject to additive bounded disturbances. We extend constraint removal, a technique recently introduced to accelerate nominal MPC, to tube-based MPC. Constraint removal detects inactive constraints before actually solving the MPC problem. By removing constraints that are known to be inactive from the optimization problem, the computational time required to solve it can be reduced considerably. We show that the number of constraints to be considered in the optimization problem decreases along any trajectory of the closed-loop system, until only the unconstrained optimization problem remains. The proposed variant of constraint removal is easy to apply. Since it does not depend on details of the optimization algorithm, it can easily be added to existing implementations of tube-based MPC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.