Abstract

Elastohydrodynamically lubricated contacts are an example of a strongly coupled fluid-structure interaction problem. Typically, these problems are solved in a partitioned way and require multiple flow-structure iterations per time step to reach convergence. The manner in which these iterations are performed is determined by the coupling algorithm. In the previous decade, several algorithms have been proposed, most of which are based on a quasi-Newton principle. These methods use an approximate Jacobian, which is constructed during the calculation itself. However, in many cases, a simpler model is available, which provides an approximate solution and Jacobian, and is denoted as surrogate model. For the elastohydrodynamically lubricated contact, this model is the coupled Reynolds-Boussinesq approach, which evaluates significantly faster than the CFD-CSM simulation. The incorporation of a surrogate model in a quasi-Newton method is realized with the IQN-ILSM algorithm. This work is a first step towards employing this coupling method for the elastohydrodynamically lubricated contact and, in this way, combining the speed of the Reynolds-Boussinesq approach with the accuracy and versatility of the CFD-CSM modelling. In the current work, only the surrogate solution will be used as initial solution. The use of the surrogate Jacobian is future work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.