Abstract

The high manufacturing cost of vanadium electrolytes is caused by the sluggish kinetics of V4+ to V3+, which restricts the commercialization of all vanadium flow batteries (VFBs). Here, density functional theory calculations first reveal the detailed reaction pathway and point out the rate-determined step by the desorption of the end product [V(H2O)6]3+. Catalytic site engineering at the molecular level can optimize the adsorption energy of [V(H2O)6]3+ to boost the kinetics. Furthermore, iron single-atoms embedded nitrogen-doped carbon nanotubes (FeSA/NCNT) are designed to decrease the adsorption energy of [V(H2O)6]3+. The reaction rate constant of FeSA/NCNT toward V4+ to V3+ is 1.62 × 10-7cm s-1, 37.5 times that of the commercial carbon catalyst. Therefore, the energy consumption is reduced by 22.5%. Meanwhile, the prepared vanadium electrolyte is of high quality with the ideal oxidation state of + 3.5 without impurities. This work reveals the catalytic mechanism of V4+ to V3+ and proposes a simple but practical strategy to reduce the preparation cost of V3.5+ electrolyte.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.