Abstract

Emissions such as Nox and CO resulting from the combustion of the diesel engines in the commercial vehicles leads to environmental degradation and ozone layer depletion. Alarming environment trend forces the government institutions to develop and enforce strict emission laws for the next generation transportation vehicles. Stricter emission laws mean higher operating pressure, temperature, reduced weight, tight packaging space, engine downsizing etc. Engine cooling systems are the critical components in the managing the engine cooling requirement of the commercial vehicle. Generally engine cooling system includes radiator, charge air cooler, engine oil cooler etc. Product development of thermal management system using the traditional design process takes more time, resource and money. To solve the complex design problem, numerical technique such as finite element analysis is performed upfront in the product development of the radiator to evaluate the structure behaviour under mechanical loading. In this paper, internal static pressure analysis of a radiator is presented to showcase the benefits of using the finite element technique earlier in the product design phase. Pressure cycle life at a critical joint of the radiator is calculated using strain-life approach. Finite element analysis aids in visualization of the hot spots in the design, comparing different design options with less turnaround time. Experimental testing and prototypes can be reduced. Risk of a product being failed is greatly minimized by performing the numerical simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.