Abstract

Inbred model organisms are powerful tools for genetic studies because they provide reproducible genomes for use in mapping and genetic manipulation. Generating inbred lines via sibling matings, however, is a costly undertaking that requires many successive generations of breeding, during which time many lines fail. We evaluated several approaches for accelerating inbreeding, including the systematic use of back-crosses and marker-assisted breeder selection, which we contrasted with randomized sib-matings. Using simulations, we explored several alternative breeder-selection methods and monitored the gain and loss of genetic diversity, measured by the number of recombination-induced founder intervals, as a function of generation. For each approach we simulated 100,000 independent lines to estimate distributions of generations to achieve full-fixation as well as to achieve a mean heterozygosity level equal to 20 generations of randomized sib-mating. Our analyses suggest that the number of generations to fully inbred status can be substantially reduced with minimal impact on genetic diversity through combinations of parental backcrossing and marker-assisted inbreeding. Although simulations do not consider all confounding factors underlying the inbreeding process, such as a loss of fecundity, our models suggest many viable alternatives for accelerating the inbreeding process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.