Abstract

The powerful von Neumann-Halperin method of alternating projections (MAP) is an algorithm for determining the best approximation to any given point in a Hilbert space from the intersection of a finite number of subspaces. It achieves this by reducing the problem to an iterative scheme which involves only computing best approximations from the individual subspaces which make up the intersection. The main practical drawback of this algorithm, at least for some applications, is that the method is slowly convergent. In this paper, we consider a general class of iterative methods which includes the MAP as a special case. For such methods, we study an “accelerated” version of this algorithm that was considered earlier by Gubin, Polyak, and Raik (1967) and by Gearhart and Koshy (1989). We show that the accelerated algorithm converges faster than the MAP in the case of two subspaces, but is, in general, not faster than the MAP for more than two subspaces! However, for a “symmetric” version of the MAP, the accelerated algorithm always converges faster for any number of subspaces. Our proof seems to require the use of the Spectral Theorem for selfadjoint mappings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.