Abstract
The consumption and availability of ultra-processed foods (UPFs), which are associated with an increased risk of noncommunicable diseases, have increased in most countries. While many countries have or are planning to incorporate UPF recommendations in their national dietary guidelines, the classification of food processing levels relies on expertise-based manual categorization, which is labor-intensive and time-consuming. Our study utilized transformer-based language models to automate the classification of food processing levels according to the NOVA classification system in the Canada, Argentina, and US national food databases. We showed that fine-tuned language models using the ingredient list text found on food labels as inputs achieved a high overall accuracy (F1 score of 0.979) in predicting the food processing levels of Canadian food products, outperforming traditional machine learning models using structured nutrient data and bag-of-words. Most of the food categories reached a prediction accuracy of 0.98 using a fined-tuned language model, especially for predicting processed foods and ultra-processed foods. Our automation strategy was also effective and generalizable for classifying food products in the Argentina and US databases, providing a cost-effective approach for policymakers to monitor and regulate the UPFs in the global food supply.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.