Abstract

The calculation of electron-phonon couplings (EPCs) is essential for understanding various fundamental physical properties, including electrical transport, optical and superconducting behaviors in materials. However, obtaining EPCs through fully first-principles methods is notably challenging, particularly for large systems or when employing advanced functionals. Here we introduce a machine learning framework to accelerate EPC calculations by utilizing atomic orbital-based Hamiltonian matrices and gradients predicted by an equivariant graph neural network. We demonstrate that our method not only yields EPC values in close agreement with first-principles results but also enhances calculation efficiency by several orders of magnitude. Application to GaAs using the Heyd-Scuseria-Ernzerhof functional reveals the necessity of advanced functionals for accurate carrier mobility predictions, while for the large Kagome crystal CsV3Sb5, our framework reproduces the experimentally observed double domes in pressure-induced superconducting phase diagrams. This machine learning framework offers a powerful and efficient tool for the investigation of diverse EPC-related phenomena in complex materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.