Abstract
Recent developments in Deep Learning have opened the possibility for automated segmentation of large and highly detailed CT scan datasets of fossil material. However, previous methodologies have required large amounts of training data to reliably extract complex skeletal structures. Here we present a method for automated Deep Learning segmentation to obtain high-fidelity 3D models of fossils digitally extracted from the surrounding rock, training the model with less than 1%-2% of the total CT dataset. This workflow has the capacity to revolutionise the use of Deep Learning to significantly reduce the processing time of such data and boost the availability of segmented CT-scanned fossil material for future research outputs. Our final Unet segmentation model achieved a validation Dice similarity of 0.96.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.