Abstract
We present a novel, computationally efficient approach to accelerate quantum optimal control calculations of large multi-qubit systems used in a variety of quantum computing applications. By leveraging the intrinsic symmetry of finite groups, the Hilbert space can be decomposed and the Hamiltonians block diagonalized to enable extremely fast quantum optimal control calculations. Our approach reduces the Hamiltonian size of an n-qubit system from 2n×2n to O(n×n) or O((2n/n)×(2n/n)) under Sn or Dn symmetry, respectively. Most importantly, this approach reduces the computational runtime of qubit optimal control calculations by orders of magnitude while maintaining the same accuracy as the conventional method. As prospective applications, we show that (1) symmetry-protected subspaces can be potential platforms for quantum error suppression and simulation of other quantum Hamiltonians and (2) Lie–Trotter–Suzuki decomposition approaches can generalize our method to a general variety of multi-qubit systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.