Abstract

In this article, we propose a hardware accelerator design using ferroelectric transistor (FeFET)-based hybrid precision synapse (HPS) for deep neural network (DNN) on-chip training. The drain erase scheme for FeFET programming is incorporated for both FeFET HPS design and FeFET buffer design. By using drain erase, high-density FeFET buffers can be integrated onchip to store the intermediate input-output activations and gradients, which reduces the energy consuming off-chip DRAM access. Architectural evaluation results show that the energy efficiency could be improved by 1.2× ∼ 2.1×, 3.9× ∼ 6.0× compared to the other HPS-based designs and emerging non-volatile memory baselines, respectively. The chip area is reduced by 19% ∼ 36% compared with designs using SRAM on-chip buffer even though the capacity of FeFET buffer is increased. Besides, by utilizing drain erase scheme for FeFET programming, the chip area is reduced by 11% ∼ 28.5% compared with the designs using body erase scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.