Abstract
Homomorphic encryption (HE) draws huge attention as it provides a way of privacy-preserving computations on encrypted messages. Number Theoretic Transform (NTT), a specialized form of Discrete Fourier Transform (DFT) in the finite field of integers, is the key algorithm that enables fast computation on encrypted ciphertexts in HE. Prior works have accelerated NTT and its inverse transformation on a popular parallel processing platform, GPU, by leveraging DFT optimization techniques. However, these GPU-based studies lack a comprehensive analysis of the primary differences between NTT and DFT or only consider small HE parameters that have tight constraints in the number of arithmetic operations that can be performed without decryption. In this paper, we analyze the algorithmic characteristics of NTT and DFT and assess the performance of NTT when we apply the optimizations that are commonly applicable to both DFT and NTT on modern GPUs. From the analysis, we identify that NTT suffers from severe main-memory bandwidth bottleneck on large HE parameter sets. To tackle the main-memory bandwidth issue, we propose a novel NTT-specific on-the-fly root generation scheme dubbed on-the-fly twiddling (OT). Compared to the baseline radix-2 NTT implementation, after applying all the optimizations, including OT, we achieve 4.2x speedup on a modern GPU.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.