Abstract

Reinforcement Learning (RL) is a widely used solution for sequential decision-making problems and has been used in many complex domains. However, RL algorithms suffer from scalability issues, especially when multiple agents are acting in a shared environment. This research intends to accelerate learning in multiagent sequential decision-making tasks by reusing previous knowledge, both from past solutions and advising between agents. We intend to contribute a Transfer Learning framework focused on Multiagent RL, requiring as few domain-specific hand-coded parameters as possible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.