Abstract

Single-shot spatiotemporally encoded (SPEN) ultrafast magnetic resonance imaging (MRI) is of great value to both scientific research and clinical application owing to its capability for delivering MR images with greater robustness to magnetic field inhomogeneity and chemical-shift displacement effects than conventional methods like EPI due to high effective phase-encoded bandwidth. Many SPEN MRI methods have been developed, among which multi-slice SPEN MRI arises as a promising supplement to ultrafast multi-slice sampling. In this work, we propose a new multi-slice SPEN MRI method, termed multi-echo segmented SPEN (ME-SeSPEN) method, which produces multiple images within a single train of echoes and successively samples widely separated slices. The resulting images were reconstructed using de-convolution super-resolved algorithm. The robustness and efficiency of the proposed method were demonstrated by phantom, lemon and in vivo experiments in comparison with spin-echo EPI, spin-echo simultaneous echo refocusing (SER), and segmented SPEN (SeSPEN) MRI. The results indicate that the new method effectively shortens the sampling time (20% reduction practically in comparison with SeSPEN when two slices are simultaneously sampled). ME-SeSPEN also reduces eddy current effects while maintaining the benefits of SPEN MRI, such as similar robustness to field inhomogeneity, spatial resolution and signal-to-noise ratio to SeSPEN MRI. The new method will promote the versatility of multi-slice MRI in practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.