Abstract

Accelerating microbial iron cycling is an innovative environmentally responsible strategy for mine remediation. In the present study, we extend the application of microbial iron cycling in environmental remediation, to include biocementation for the aggregation and stabilization of mine wastes. Microbial iron reduction was promoted monthly for 10months in crushed canga (a by-product from iron ore mining, dominated by crystalline iron oxides) in 1m3 containers. Ferrous iron concentrations reached 445ppm in treatments and diverse lineages of the candidate phyla radiation dominated pore waters, implicating them in fermentation and/or metal cycling in this system. After a 6-month evaporation period, iron-rich cements had formed between grains and 20-cm aggregates were recoverable from treatments throughout the 1-m depth profile, while material from untreated and water-only controls remained unconsolidated. Canga-adapted plants seeded into one of the treatments germinated and grew well. Therefore, application of this geobiotechnology offers promise for stabilization of mine wastes, as well as re-formation of surface crusts that underpin unique and threatened plant ecosystems in iron ore regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.