Abstract

In this report, we discuss the use of contemporary ray-tracing techniques to accelerate 3D mesh-based Monte Carlo photon transport simulations. Single Instruction Multiple Data (SIMD) based computation and branch-less design are exploited to accelerate ray-tetrahedron intersection tests and yield a 2-fold speed-up for ray-tracing calculations on a multi-core CPU. As part of this work, we have also studied SIMD-accelerated random number generators and math functions. The combination of these techniques achieved an overall improvement of 22% in simulation speed as compared to using a non-SIMD implementation. We applied this new method to analyze a complex numerical phantom and both the phantom data and the improved code are available as open-source software at http://mcx.sourceforge.net/mmc/.

Highlights

  • Near-infrared (NIR) light with wavelength between 600 and 1000 nm can penerate deep into the tissue [1], owning primarily to the relatively low optical absorption of human tissue chromorphores, namely oxy/deoxy-hemoglobin, lipids and water

  • Accurate and efficient numerical methods play an essential role in NIR-based techniques such as diffuse optical tomography (DOT) and fluorescence molecular tomography (FMT)

  • We quantitatively compare the proposed algorithms to demonstrate the benefits of using Streaming SIMD Extensions (SSE) acceleration

Read more

Summary

Introduction

Near-infrared (NIR) light with wavelength between 600 and 1000 nm can penerate deep into the tissue [1], owning primarily to the relatively low optical absorption of human tissue chromorphores, namely oxy/deoxy-hemoglobin, lipids and water. This remarkable characteristic makes NIR light a suitable candidate to probe deep tissue physiology such as angiogenesis and oxygen metabolism in a safe and non-invasive manner. The transport of low-energy NIR photons is highly nonlinear and exhibits a complex and diffusive pattern. Accurate and efficient numerical methods play an essential role in NIR-based techniques such as diffuse optical tomography (DOT) and fluorescence molecular tomography (FMT)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call