Abstract
Finding the k nearest neighbours of each point in a point cloud forms an integral part of many point-cloud processing tasks. One common approach is to build a kd-tree over the points and then iteratively query the k nearest neighbors of each point. We introduce a simple modification to these queries to exploit the coherence between successive points; no changes are required to the kd-tree data structure. The path from the root to the appropriate leaf is updated incrementally, and backtracking is done bottom-up. We show that this can reduce the time to compute the neighbourhood graph of a 3D point cloud by over 10%, and by up to 24% when k = 1. The gains scale with the depth of the kd-tree, and the method is suitable for parallel implementation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.