Abstract

We propose a fast implementation for iterative MR image reconstruction using Graphics Processing Units (GPU). In MRI, iterative reconstruction with conjugate gradient algorithms allows for accurate modeling the physics of the imaging system. Specifically, methods have been reported to compensate for the magnetic field inhomogeneity induced by the susceptibility differences near the air/tissue interface in human brain (such as orbitofrontal cortex). Our group has previously presented an algorithm for field inhomogeneity compensation using magnetic field map and its gradients. However, classical iterative reconstruction algorithms are computationally costly, and thus significantly increase the computation time. To remedy this problem, one can utilize the fact that these iterative MR image reconstruction algorithms are highly parallelizable. Therefore, parallel computational hardware, such as GPU, can dramatically improve their performance. In this work, we present an implementation of our field inhomogeneity compensation technique using NVIDA CUDA(Compute Unified Device Architecture)-enabled GPU. We show that the proposed implementation significantly reduces the computation times around two orders of magnitude (compared with non-GPU implementation) while accurately compensating for field inhomogeneity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.