Abstract

We propose a method for accelerating interactive evolutionary computation (IEC) and evolutionary computation (EC) searches using elite obtained in one-dimensional spaces and use benchmark functions to evaluate the proposed method. The method projects individuals onto n one-dimensional spaces corresponding to each of the n searching parameter axes, approximates each landscape using interpolation or an approximation method, finds the best coordinate from the approximated shape, obtains the elite by combining the best n found coordinates, and uses the elite for the next generation of the IEC or EC. The advantage of this method is that the elite may be easily obtained thanks to their projection onto each one-dimensional space and there is a higher possibility that the elite individual locates near the global optimum. We compare the proposal with methods for obtaining the landscape in the original search space, and show that our proposed method can significantly save computational time. Experimental evaluations of the technique with differential evolution using a simulated IEC user (Gaussian mixture model with different dimensions) and 34 benchmark functions show that the proposed method substantially accelerates IEC and EC searches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.