Abstract
AbstractThe more sluggish kinetics of hydrogen evolution catalysts in base as compare to that in acid to some degree restricts hydrogen production performance of hydroxide exchange membrane electrolyzers, especially when using earth‐abundant catalysts. Here a ternary nickel–copper–molybdenum hydrogen evolution catalyst is reported that exhibits ≈5 times higher turnover frequency than without copper doping. The X‐ray absorption near‐edge structure and valence band spectrum demonstrate that the light doping of copper into nickel–molybdenum alloy modulates the electronic structure and downshifts the d‐band center, resulting in accelerated hydrogen desorption, as consolidated by H2 temperature programmed desorption and theoretical calculation. An electrolyzer employing this cathode catalyst and a nickel–iron anode, gives a current density of 1.7 A cm−2 at 2.0 V with a pure‐water feed through the anode, which outperforms the 2025 target proposed by the United States Department of Energy, and even is operated continuously for over 1000 h with a decay rate of as low as 0.5 mV h−1. Post‐mortem analysis discloses that hydroxide exchange ionomer migration is one of the key factors affecting long‐term durability. This work demonstrates the feasibility of a low‐cost, water‐fed hydroxide exchange membrane electrolyzer achieving industrial‐level performance and lifetime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.