Abstract

Parameter estimation on gravitational wave signals from compact binary coalescence (CBC) requires the evaluation of computationally intensive waveform models, typically the bottleneck in the analysis. This cost will increase further as low frequency sensitivity in later second and third generation detectors motivates the use of longer waveforms.We describe a method for accelerating parameter estimation by exploiting the chirping behaviour of the signals to sample the waveform sparsely for portions where the full frequency resolution is not required. We demonstrate that the method can reproduce the original results with a waveform mismatch of ⩽, but with a waveform generation cost up to times lower for computationally costly frequency-domain waveforms starting from below 8 Hz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.