Abstract
Phase-field damage models are able to describe crack nucleation as well as crack propagation and coalescence without additional technicalities, because cracks are treated in a continuous, spatially finite manner. Previously, we have developed a phase-field model to capture the rate-dependent failure of rubber, and we have further enhanced it to describe failure due to cyclic loading. Although the model accurately describes fatigue failure, the associated cyclic simulations are slow. Therefore, this contribution presents an acceleration scheme for cyclic simulations of our previously introduced phase-field damage model so that the simulation speed is increased to facilitate large-scale simulations of industrially relevant problems. We formulate an explicit and an implicit cycle jump method, which, depending on the selected jump size, reduce the calculation time up to 99.5%. To circumvent the manual tuning of the jump size, we also present an adaptive jump size selection procedure. Thanks to the implicit adaptive scheme, all material parameters are identified from experiments, which include fatigue crack nucleation and crack growth. Finally, the model and its parameters are validated with additional measurements of the fatigue crack growth rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.