Abstract

Abstract : We present new algorithms for the k-means clustering problem. They use the kd-tree data structure to reduce the large number of nearest-neighbor queries issued by the traditional algorithm. Sufficient statistics are stored in the nodes of the kd-tree. Then an analysis of the geometry of the current cluster centers results in great reduction of the work needed to update the centers. Our algorithms behave exactly as the traditional k-means algorithm. Proofs of correctness are included. The kd-tree can also be used to initialize the k-means starting centers efficiently. Our algorithms can be easily extended to provide fast ways of computing the error of a given cluster assignment regardless of the method in which those clusters were obtained. We also show how to use them in a setting which allows approximate clustering results, with the benefit of running faster. We have implemented and tested our algorithms on both real and simulated data. Results show a speedup factor of up to 170 on real astrophysical data, and superiority over the naive algorithm on simulated data in up to 5 dimensions. Our algorithms scale well with respect to the number of points and number of centers allowing for clustering with tens of thousands of centers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.