Abstract

Photocatalysis as a sustainable technology is expected to provide a novel sight for the green synthesis of urea directly using N2 , CO2 , and H2 O under mild conditions. However, the fundamental issue of inefficient electron transfer in photocatalysis strongly hinders its feasibility, especially for the above multi-electron-demanding urea synthesis. Herein, an effective strategy of accelerating electron-transfer dynamics is reported by TiO2 -immobilized reversible single-atom copper (denoted as Cu SA-TiO2 ) to enhance the performance for photosynthesis of urea from N2 , CO2 , and H2 O. As revealed by a series of quasi-in-situ characterizations (e.g., electron paramagnetic resonance, and wavelength-resolved and femtosecond time-resolved spectroscopies), the expedited dynamics behaviors originating from reversible single-atom copper in as-designed Cu SA-TiO2 (electron extraction rate: over 30 times faster than the reference photocatalysts) allow the assurance of abundant and continual photogenerated electrons for multi-electron-demanding co-photoactivation of N2 and CO2 , resulting in considerable rates of urea production. The strategy above for improving the photoelectron-extraction ability of photocatalysts will offer a high-efficiency and promising route for artificial urea photosynthesis and other multi-electron-demanding photocatalytic reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.